
TP May 13, 2020

Formal Languages – Exercise on Syntactic Analysis

The files associated with this exercise can be found here:

http://www.lsv.fr/~schwoon/enseignement/langages-formels/2020/

Your answers to the questions will be marked. You can work in groups of
two. Answers must be submitted until May 23 before midnight, in the form
of an archive (zip or tgz) containing the following files:

• your .l file for Question 1;

• your .y and .l file for Question 2;

• possibly a Readme file if you have additional comments.

The mark of the exercise counts for a fifth of the overall mark.
In this exercise, we will use the programs flex for lexical analysis and

bison for syntactic analysis. The two work in a similar manner : the user
defines rules that are then translated into C code.

As a running example, we will use the following grammar with terminals
int, (,), verb-+-, *, which treats simple arithmetic expressions:

E → E + T | T T → T ∗ F | F F → (E) | int

1 Lexical analysis

An exhaustive documentation of flex can be found on line:
https://westes.github.io/flex/manual/

or on your local machine using info flex. While this document explains
the most basic aspects, it is recommended to go to the above sources for more
detailed explanations; the most useful sections will be from 4 to 8, as well as
15.

Note : the examples of this section can be found in the directory lexical.
Generally, an input file for flex consists of three sections separated by a

line containing two percent signs:

1/6

Formal Languages TP

Definitions

%%

Rules

%%

Code

The Rules consist of regular expressions associated with blocks of C code.
The C code is executed whenever an instance of the associated regular ex-
pression was found in the input. If the input matches multiple choices, flex
always chooses the longest match possible, and gives priority to expressions
further up in the list. Parts of the input that do not match any regular
expression are simply copied to standard output.

The Definition section can serve to define shortcuts for regular expres-
sions, which can make them more readable. One can also include additional
C code, delimited between markers %{ and %}, e.g. to define global variables
or functions.

Finally, the last section can contain additional C code. Technically, the
Rules section is translated into a function yylex, which can be called repeat-
edly to scan part of the input; it will return whenever the code associated
with your regular expressions tells it to, or at the end of the input. By de-
fault, yylex reads from standard input, but it can also be made to read from
files or strings, see the examples.

Consider the file example.l which extracts the terminals for our running
example. On the command line, it suffices to make example.c to produce
the corresponding C code, or simply make example to do that, and com-
pile that program at the same time. The programme accepts input from
standard input or a file. The file string.l shows how to read from strings
instead. Finally, the example flux.l shows how to associate additional in-
formations with the extracted terminals. (bison will provide a similar, but
more sophisticated interface for this purpose.)

Question 1. Modify exemple.l to provide the following extensions.

1. Currently, non-treated characters are copied to the screen. Find a way
to stop this from happening.

2. If the input fontains the keywords if, then or else, they should be
printed in capital letters.

2/6

Formal Languages TP

3. Add code to count the number of lines in the text, and print that
number to the screen when the program ends.

4. Add the possibility to specify numbers in hexadecimal, e.g., 0x2a for
42. The function strtol can be useful for this.

Flex can be used to provide a flow of terminals towards another function.
For this, one includes return statements in the C code. When yylex re-
turns 0, this signifies ‘end of input’, whereas positive values are reserved for
terminals. This mechanism is exploited by bison.

2 Syntactic analysis

Bison provides an LALR parser and is made to interface with flex. An
exhaustive documentation can be found here:

https://www.gnu.org/software/bison/manual/html_node/index.html

or on your machines with info bison.
Note : The examples for this section are found in the directory syntaxique.

A first example. The first example consists of files expr.y and exprlex.l

(compile using make exprlex.c plus make expr). As before, the executable
accepts standard input, or a file name given as parameter.

An input file for bison (such as expr.y) contains three sections, mostly as
in flex, but where the Rules section defines a grammar. In our example, one
finds a simplified grammar for expressions. The keyword %union defines the
files of a variable yylval which the lexical analyser can use to attach addi-
tional information to terminals (in bison lingo, terminals are called tokens).
Moreover, an instance of yylval can be associated with every non-terminal.
The declarations starting with %token and %type tells the parser which ter-
minals and non-terminals are using which field of the union (in the example,
there is only one integer type). Individual characters are treated as tokens
even without explicit declaration.

Similar to flex, every production can be associated with a piece of code,
which is to be executed when the parser reduces that rule. Since the parsing
is bottom-up, the yylval values for the right-hand side of a production are
already known when the reduction happens. This makes it easy to construct
the result of the entire syntax tree, as in this example for integer expressions:

3/6

Formal Languages TP

E : E ’*’ E { $$ = $1*$3; }

| E ’+’ E { $$ = $1+$3; }

| ’(’ E ’)’ { $$ = $2; }

| INT

In the bits of C code, $$ signifies the value associated with the left-hand
side non-terminal; thanks to previous definition, the parser knowns that its
type is an integer. The expressions $1 etc recover the values associated with
the first, second etc symbol on the right-hand side. If no C code is provided,
the standard action is $$ = $1;, which is the case for the last production in
our example.

Note: A common beginner’s mistake is to leave the code section empty
when one wants the compiler to do nothing at all during a reduction. How-
ever, the C compiler may then complain when the types of $$ and $1 do not
match. In these cases it is better to explicitly provide an empty piece of code
({ }).

Fixing conflicts. Play around with the example. You will notice that the
usual priority between multiplication and addition is not respected, thanks
to our “simplified” grammar. At compile time, bison actually complains
about multiple shift/reduce conflicts. When faced with such a problem, it
is useful to inspect the state table of the parser, which can be produced
using bison -v expr.y; this produces a file called expr.output. Conflicts
are clearly marked in that file; in this case one would see that items like
E → E + E. and E → E ∗ E. cause shift/reduce conflicts for both + and
*, which are arbitrarily resolved by shifting. What this means is that an
expression of the form E ◦1E ◦2E is evaluated as E ◦1 (E ◦2E). It should be
clear that in some cases, this is either inconsequential or in fact the intended
semantics, but in other cases it is not. The upshot of this is that conflicts in
your grammars should always be treated as errors and be eliminated. Bison
provides multiple ways to do this.

The first method to fix those conflicts is to modify the grammar along
the lines of our running example, see page 1. This works but quickly creates
overly complicated grammars (imagine we treated not 2 but 20 operators. . .).
For the case of arithmetic and logical expressions, there exists a tailored
solution to guide bison in correctly resolving those conflicts: one can add the
following lines to the Definitions:

4/6

Formal Languages TP

%left ’+’

%left ’*’

This declares both operators to be left-associative, and the order signifies
that multiplication binds more strongly than addition. (Recompile and verify
the state table to check that it works as intended!)

Finally, we remark that exprlex.l now supplies the terminals declared
in expr.y (such as INT) and uses yylval to provide additional attributes.
In fact, bison compiles its grammar into a function called yyparse, which
continually calls yylex to obtain the next terminal. Thus, exprlex.c is
included by expr.y to provide it with the yylex function.

A small programming language. The files lang.y and langlex.l con-
tain an interpreter of a very simple programming language with boolean
variables (compile it as before). The file counter.my gives an example of
that language. Your task is to extend the language in several ways. For
most of these tasks, one must extend multiple things: the lexical analyser,
the grammar, and the associated interpreter.

5/6

Formal Languages TP

Question 2.

1. Add a boolean equivalene operator (<=>), with the right priority.

2. Add a control structure if/then/else/fi where the else part is op-
tional. How is the ‘dangling else’ problem treated? (Look up the
problem on Wikipedia if you haven’t heard of it before.)

3. Add integer variables to the languages. This comprises several sub-
tasks:

(a) Integer variables should be declared analogously to booleans with
a list like this: int a,b,c;. A program may have only integer
variables, or only boolean variables, or both, or none of them.

(b) Add instructions of the form a := expr, where a is an integer
variable and expr an integer expression with at least multiplica-
tion, addition, and parantheses.

(c) Extend the boolean expressions with comparisons (at least == and
<).

(d) print should accept both types of variables.

(e) A small type inference system will be needed to check that vari-
ables used in expressions are of the right type.

Additional remarks Shift/reduce and reduce/reduce conflicts must be
eliminated from the grammar.

The addition of the integers is clearly the main part of the work, and it
requires to carefully think about the data structures that you are going to
use. Nonetheless, as an indication, the entire solution can be obtained by
adding no more than 2K of code overall, or around 60 lines of code.

6/6

